Searchable, peer-reviewed, open-access proceedings from bioscience and biomedical conferences
Bioscientifica Proceedings (2019) 5 RDRRDR34 | DOI: 10.1530/biosciprocs.5.034

REDR2002 Reproduction in Domestic Ruminants V Ruminant Models for Human Clinical Medicine (5 abstracts)

The differential secretion of FSH and LH: regulation through genes, feedback and packaging

AS McNeilly 1 , JL Crawford 1 , C Taragnat 2 , L Nicol 1 & JR McNeilly 1


1MRC Human Reproductive Sciences Unit, University of Edinburgh Centre for Reproductive Biology, The Chancellor's Building, New Royal Infirmary, 49 Little France Crescent, Old Dalkeith Road, Edinburgh EHI6 4SB, UK; and 2INRA Station Physiologic de la Reproduction et des Comportements, 37380 Nouzilly, France


While the role of oestradiol and progesterone in the control of GnRH pulsatile secretion and generation of the preovulatory GnRH surge to induce release of the LH surge has been fully investigated, less attention has been given to changes in the pituitary gland that may sensitize gonadotrophs to switch from pulsatile release to surge release of LH, in particular. Furthermore, in the follicular phase while pulsatile secretion of LH is maximal, FSH secretion is reduced, yet both hormones are produced by the same gonadotrophs. The mechanisms whereby this differential release can occur are still unclear. The main regulator of FSH secretion is through the negative feedback effects of oestradiol and inhibin, which directly affect FSHß mRNA content and subsequent synthesis of FSH. FSH is then released predominantly via a constitutive pathway and the amount released is closely related to the rate of synthesis. In contrast, while basal LH secretion occurs via a constitutive pathway, the principal release of LH through pulsatile secretion is through the regulated pathway with GnRH stimulating the release of pre-synthesized LH contained in storage granules without significant changes in LHß mRNA. Secretogranin II (Sgll) is associated with LH in these electron-dense storage granules and LH-Sgll granules appear to be the principal form of granule released in response to GnRH through the regulated pathway. At the time of the preovulatory LH surge, granule movement to the gonadotrope cell membrane abutting a capillary, polarization, appears to play an important part in the priming mechanism for release of LH during the preovulatory LH surge in response to the GnRH surge. As there appears to be limited or no gonadotroph cell division in the adult pituitary gland, each gonadotroph passes through this synthesis and secretion pathway repeatedly through successive oestrous cycles. Packaging of LH and FSH into different secretory granules within the same cell is thus pivotal for the differential secretion of these gonadotrophins.

© 2003 Society for Reproduction and Fertility

Article tools

My recent searches

No recent searches