
153Cattle placental development

Corresponding author E-mail: Christiane.Pfarrer@tiho-hannover.de

Dedicated to Prof. Dr. Rudolf Leiser for sharing with me his contagious excitement for bovine placentation 
and mentoring my scientific career without restricting my creativity.

Placental development and its control in cattle

Jan-Dirk Haeger, Nina Hambruch and Christiane Pfarrer
Department of Anatomy, University of Veterinary Medicine Hannover

Summary

This review aims to provide an overview of the current knowledge 
regarding the development and function of the bovine placenta, starting 
with the gross anatomical morphology and histology. In addition, detailed 
information on trophoblast giant cell formation (TGC) and the complex 
interplay of the extracellular matrix (ECM) proteins, integrins and growth 
factor systems is given. Drugs and pathological conditions (e.g. cloned 
placenta, retained placenta) are also reviewed. Knowledge derived 
from cell culture studies is embedded and set in proportion to the data 
gained from in vivo experiments. Finally, new discoveries and the major 
challenges for future work on the bovine placenta close the circle, in order 
to provide a complete picture of what is known about this fascinating, 
synepitheliochorial organ.

Introduction

In the bovine placenta fetal cotyledons and maternal caruncles form placentomes, which are 
the main areas of exchange between fetus and mother. In the past the fetal-maternal interhemal 
barrier was characterized as syndesmochorial, meaning that invading trophoblast is directly 
opposed to endometrial stroma, due to an assumed destruction of the uterine epithelium 
(Grosser 1927). However, subsequent studies revealed that the uterine epithelium persists 
throughout gestation; therefore, the term epitheliochorial placenta was proposed (Bjorkman 
1969). To further specify the nomenclature, which is based on layers between fetal and maternal 
circulation as well as on the physiology, Wooding et al. (1992) introduced the more specific 
term synepitheliochorial, thus emphasizing alterations in uterine epithelium by hybrid cell 
formation (Wooding 1992). To date, this specification is generally accepted.

Like other mammalian species, diseases compromising the placenta and its function are also 
present in bovine. One of the most prominent is the retention of fetal membranes (RFM), which 
can affect the reproductive performance and lead to considerable economic loss at the herd 
level (Laven & Peters 1996). Even though in the past numerous attempts were made to tackle 
this pathology by using a variety of sophisticated methodologies (e.g. gene expression analysis), 
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RFM still remains a major economic problem. This review attempts to give a comprehensive 
overview of the development of the bovine placenta including placental morphology, 
trophoblast development, cell-cell and cell-matrix interactions, new discoveries and major 
future challenges. In addition to in vivo data that is available, we chose to incorporate a range 
of findings from in vitro studies since it has become more and more popular to use cell-culture 
based systems to investigate distinct, isolated aspects of placental development or functionality 
in a controlled environment.

General morphology

In the mature placenta of cattle, groups of (fetal) chorioallantoic villi, named cotyledons, are 
anchored in maternal endometrial crypts, which are part of the caruncle. Each fetal villus 
contains an outer trophoblast layer, underlined by mesenchyme containing multiple blood 
vessels. The outermost uterine cell layer, neighboring the trophoblast, is the uterine epithelium, 
which is also underlined by stromal tissue and multiple blood vessels (Buse et al. 2013). Fetal 
villi themselves can be divided into stem, intermediate and terminal villi, whilst the villous 
blood vessels can be accordingly classified as stem arteries and veins, intermediate arterioles 
and venules and terminal capillaries. This cotyledonary architecture of the fetal placenta is like 
the one found in the human hemochorial placenta (Leiser et al. 1997). Interestingly, the villous 
placental blood vessels of ruminants show adaptational changes to hypoxic environmental 
stress, analogous to changes occurring in placentas of e.g. heavy smokers (Krebs et al. 1997, 
Pfarrer et al. 1999). During bovine implantation the chorioallantoic sac enlarges from gestational 
day (gd) 16 to 27 (for review (Assis Neto et al. 2010). Within this period the development of 
cotyledons starts near to the embryo and later spreads over the chorioallantoic sac. Exclusively 
the allantochorion of the cotyledons attaches to the uterine caruncles forming so-called 
placentomes. Due to this sequential formation the most developed placentomes can be found 
close to the embryo (Leiser 1975). The caruncles themselves number up to 100 to 140 and 
are devoid of endometrial glands. In the nonpregnant animal the caruncular precursors are 
mushroom-shaped nodules that have already been observed in fetal endometrium and undergo 
histological remodeling up to 12 months after birth in order to become caruncles (Atkinson et 
al. 1984). During implantation and placentation in cattle major structural and ultrastructural 
changes occur (Wathes & Wooding 1980, Leiser 1975), which finally lead to the mature bovine 
placenta. Actual growth is observed until gd 170; after that enlargement of the feto-maternal 
interface is accomplished by branching of the villous trees and corresponding crypts (Leiser et 
al. 1997). Histologically, the synepitheliochorial ruminant placenta contains 80% polarized 
uninucleate trophoblast cells (UTC) and 20% non-polarized trophoblast giant cells (TGC). Like 
the UTC the uterine epithelium (UE) is also polarized. Both cell layers possess apical microvilli, 
which lie in close association with each other. The remaining gap is termed intervillous space. 
In epitheliochorial and synepitheliochorial placentae this space is 15-20nm wide and contains 
ancient pregnancy-associated glycoproteins (Wooding et al. 2005b). In the synepitheliochorial 
placenta of sheep extracellular matrix (ECM) proteins like osteopontin are distinctly located 
in the intervillous space and have been suggested to mediate trophoblast attachment to the 
endometrium (Johnson et al. 2003). The gross anatomy and histology of the bovine placenta 
at different developmental stages are shown in Fig. 1.
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All samples were obtained 
from the local abattoir and 
the gestational day (GD) 
was determined according 
to (Assis Neto et al. 2010). 
(A) Early stage of bovine 
placental development: 
no cotyledons on the 
chorioallantoic sac (CAS) 
(length: 14cm, width: 0.7-
1.4cm) are visible. The 
size of the embryo (GD 
16-17) (thin arrowhead) is 
0.8cm. (B) More advanced 
stages of bovine placenta: 
m u l t i p l e  c o t y l e d o n s 
(caliber: 2-2,2cm) (pars 
fetalis of placenta) can be 
seen on the CAS. The most 
developed are close to the 
embryo (GD 28) (arrows), 
whilst the least developed 
are located at the end of the 
CAS (arrowheads). The size 
of the embryo is 8cm. The 
images (C) and (D) display 
endometrial caruncles (pars 
maternalis of placenta) 
close to the embryo, which 
have been indicated by 
dotted lines. (C) Caruncle 
(calibre: 0.5cm) in early 
pregnancy belonging to 
the embryo in image (A). 
No crypts are observed. (D) 
Caruncle (calibre: 1-1.3cm) 
belonging to the embryos 
in image (B): shallow 
caruncular crypts can be 
seen. (E-G) Bovine mid-
gestational placentome 
(5.-6. month of gestation; 
size 4-4.4cm). (E) Intact 

placentome (partes fetalis and maternalis). On the fetal side chorioallantoic blood vessels supplying the 
cotyledon are visible. (F-G) The same placentome separated: a cotyledon (F) containing multiple fetal villi 
that were formerly anchored in the crypts of the maternal caruncle (G). (H) Histological section stained 
with PAS (Periodic Acid Schiff): The core of the fetal villus is made up of mesenchyme (ME) lying beyond 
the uninucleate trophoblast (UTC), located on a basement membrane. Among the UTC two trophoblast 
giant cells (asterisks) can be seen, one of which is binucleate. The caruncular epithelium (CE) itself is 
located on a basement membrane and is underlined by maternal stroma (MS). The feto-maternal interface 
(between UTC and CE) is partially strongly stained (arrowhead). Scale bar=20µm.

Fig. 1. Gross anatomy of different developmental stages of the bovine placenta 
(A-G) and histology of the feto-maternal interface in cattle (H). 
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Trophoblast Giant Cells (TGC)

TGC (Klisch et al. 1999a) are considered to be moderately invasive (Pfarrer et al. 2003) because 
they migrate through chorionic tight junctions towards the UE and fuse with singular UE to form 
hybrid cells, which exocytose TGC products into the maternal compartment of the placenta. 
Due to the fact that the majority of TGC have two nuclei they are also termed binucleate cells 
(BNC) or in older literature diplokaryocytes. They arise from uninucleate trophoblast cells (UTC) 
(Wimsatt 1951) by tripolar acytokinetic mitosis and are polyploid (Klisch et al. 1999ab). TGC 
begin to form during bovine implantation from gd 16-33 (Wathes & Wooding 1980, Leiser 1975, 
Greenstein et al. 1958) and make up 20% of all trophoblast cells throughout gestation (Wooding 
1992). Their number decreases dramatically at the end of gestation, when TGC can only be 
sporadically detected in individual villi (Klisch et al. 2006). In cattle hybrid cells generally form 
through fusion of one TGC with one uterine epithelial cell, and therefore mostly contain three 
nuclei. In contrast, ovine TGC continuously fuse with existing hybrid cells, thereby forming 
syncytia with up to 25 nuclei (Wooding 1992). The fact that the ovine feto-maternal interface 
almost exclusively consists of these large hybrid syncytia may be one reason that RFM is not 
common in sheep. In past studies it was discussed whether or not TGC could arise from all UTC 
or exclusively from a stem cell population (Greenstein et al. 1958, Wimsatt 1951). The mature 
placenta in rodents is known to have multiple TGC subtypes that have distinct cell lineage 
origins (Hu & Cross 2010). Apart from that, murine TGC that differentiate from trophoblast 
stem cell lines showed invasive capacity thereby resembling normal trophoblast cells in vivo 
(Hemberger et al. 2004). In bovine, little is known about the stages of differentiation from a 
uninucleated trophoblast cell (UTC) to an invading TGC or the underlying reasons for the drastic 
change in biological activity between these two cell populations. Trophoblast cell lines provide 
valuable data for investigating this process, which is one of the most intriguing characteristics of 
trophoblast cells. A common feature of blastocyst (Shimada et al. 2001) and placenta-derived 
bovine trophoblast cells in culture (Hambruch et al. 2009) is the loss of TGC, most likely because 
no more UTC undergo TGC differentiation in vitro (Shimada et al. 2001, Hambruch et al. 2009). 
Yet, singular TGC, which have either attached or spontaneously differentiated, can be seen in 
early passages of bovine primary (Hambruch et al. 2009) or permanent trophoblast cell lines 
(Hambruch et al. 2009, Shimada et al. 2001). The loss of TGC and the continuous presence of 
proliferating UTC, from which TGC in vivo originate, makes such cell lines an ideal tool to study 
TGC differentiation and possibly identify its regulators. Different conclusions have been drawn 
from such in vitro experiments. Nakano et al. (2002b) have demonstrated that extracellular 
matrix, namely type I collagen (COL1) could induce up to 3% TGC from blastocystal UTC. The 
resulting TGC showed expression of bovine placental lactogen (bPL, CSH1), no cytokeratin 
expression, and polyploid nuclei (Nakano et al. 2002b). Yet, the expression of pregnancy-
associated glycoproteins and the total in vivo TGC percentage (20% of all trophoblast cells) 
has not been observed (Nakano et al. 2002b, Nakano et al. 2002a), indicating differentially 
regulated steps in TGC differentiation. UTC isolated from bovine placentomes so far have not 
been shown to differentiate into TGC (Hambruch et al. 2009). One reason could be the fact that 
the UTC placental environment (polarized cells with apical contact to uterine epithelial cells 
after epithelial-mesenchymal transformation) is completely different from the preimplantative 
blastocystal one. In addition, the co-localization of transcription factors in bovine trophoblast 
cells in vivo has pointed towards the importance of proteins like DLX3 (distal-less homeobox 
3), SP1 (specificity protein 1) and PPARG (peroxisome proliferator-activated receptor gamma; 
Degrelle et al. 2011) in the regulation of TGC formation. Other transcription factors like OCT4 
(octamer-binding transcription factor 4), NANOG and CDX2 (caudal type homeobox 2) have 
only been analyzed during the development of blastocyst stage embryos (Madeja et al. 2013) 
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in vitro but not in placental tissue. Yet, others like GATA2 and GATA3 (GATA binding protein 
2/3) have been found to affect endogenous CDX2 and INFT (interferon tau) expression (Bai et al. 
2009) and might also play a role in TGC development. Multiple growth factors like Fibroblast 
Growth Factor (FGF) (Pfarrer et al. 2006a), Vascular Endothelial Growth Factor (VEGF) (Pfarrer 
et al. 2006b) and Platelet-Activating Factor (PAF) (Bucher et al. 2006) are co-localized in TGC 
and could act upstream of the previously mentioned transcription factors. In addition, others 
have suggested that steroid synthesis could be the most striking cause for TGC differentiation 
(Schuler et al. 2008, Khatri et al. 2013). Furthermore, another hypothesis on the development 
of TGC has been proposed, namely endogenous retroviruses, which are latently present in the 
mammalian genome (Black et al. 2010, Koshi et al. 2012). Such retroviral genes have been 
detected in the bovine placenta in vivo (Baba et al. 2011) and in vitro where they are involved 
in the expression of TGC-specific genes during the differentiation process (Koshi et al. 2011, 
Koshi et al. 2012).

Cell-cell and cell-matrix interactions 

Caruncular and placentomal growth, elaboration of villous trees as well as regression after 
birth requires extensive tissue remodeling during all stages of gestation and postpartum. Any 
remodeling is based on loosening/dissociation of cell-matrix junctions within the connective 
tissue of the maternal crypts and the fetal mesenchyme of the villous trees. Here fibroblasts are 
the major source for ECM molecules like fibronectin (FN1), type I collagen and type IV collagen 
(COL4) and laminin. They also produce a variety of matrix metalloproteinases (MMPs) for the 
remodeling of those components (Kalluri & Zeisberg 2006). In bovine, ECM molecules have been 
detected in the placenta from gestational day (gd) 80 to 270 in addition to the subunits of their 
respective integrin receptors (Pfarrer et al. 2003). These integrins are known to serve multiple 
functions at the feto-maternal interface in domestic animals during implantation (Burghardt et 
al. 2002). MMPs are a family of zinc-dependent endopeptidases that collectively are capable 
of degrading all extracellular matrix molecules. The MMP family can be subdivided into four 
different groups, which are the archetypal MMPs like collagenases, the gelatinases (e.g. MMP9), 
the matrilysins and the convertase-activatable MMPs (e.g. MMP14) that can be secreted or are 
membrane-associated (Fanjul-Fernandez et al. 2010). MMPs are regulated by four specific tissue 
inhibitors of matrix metalloproteinases (TIMPs) and by a variety of growth factors, cytokines 
and chemokines (Clark et al. 2008). Furthermore, MMPs cleave intracellular substrates like 
cytoskeletal proteins and are located in multiple cellular compartments, demonstrating the 
importance and wide range of MMP mediated processes (Cauwe & Opdenakker 2010). Placental 
cells share many molecular circuits with cancer cells (Ferretti et al. 2007). Specifically, the 
biological activities of MMPs (e.g. for cell proliferation, invasion and angiogenesis) have been 
confirmed for cancer cells (Egeblad & Werb 2002, Murray & Lessey 1999). Therefore, in the 
placenta similar ways of action are likely during implantation, gestation and around parturition.

Several studies have detected MMPs and tissue inhibitors of metalloproteinases (TIMPs) in 
bovine placental tissue throughout gestation (Kizaki et al. 2008, Walter & Boos 2001) or at 
term in comparison to animals suffering from RFM (Dilly et al. 2011, Streyl et al. 2012, Walter 
& Boos 2001). The gelatinases MMP2 and 9 are located in multiple placental compartments 
and appear to be the most likely candidates to play roles in ECM remodeling throughout 
gestation (Walter & Boos 2001, Kizaki et al. 2008). In term placental tissue  membrane-bound 
MMP14 was also expressed on a protein level (Dilly et al. 2011). The main TIMP expressed 
in the placenta on a protein level is TIMP2, which is distinctly located only in TGC (Walter & 
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Boos 2001, Dilly et al. 2011). Furthermore, the mRNA of extracellular matrix metalloproteinase 
inducer (EMMPRIN), another factor that is able to regulate MMP14 and 2 expression, was located 
in bovine placental cell populations in increasing quantities throughout gestation (Mishra et al. 
2012). Other members of the MMP (MMP1, 3, 9, 13, and 16) and TIMP family (TIMP1, 3 and 
4) have so far only been detected on an mRNA level (Streyl et al. 2012) in term placental tissue, 
apparently due to the lack of proper antibodies. 

Regarding the localization of ECM molecules and MMP substrates, considerable data are 
available. Throughout gestation multiple ECM molecules have been detected in the bovine 
placenta (Pfarrer et al. 2003, Boos et al. 2000). In placentomes, type I collagen and type III 
collagen are localized in the mesenchyme and the endometrial maternal stroma as well as blood 
vessel walls, while type IV collagen is observed beneath all epithelia, myometrium and also in 
the walls of vessels. Interestingly, type I collagen cannot be observed in the mesenchyme during 
early pregnancy, but later on increases strongly in midpregnancy (Boos et al. 2003b). The walls 
of large fetal and maternal blood vessel continuously express fibronectin and laminin throughout 
gestation. At gd 270 a local loss of type IV collagen and laminin has been observed in the 
maternal basement membrane. During early pregnancy TGC express high amounts of laminin 
and the corresponding ITGA6B1 integrin receptor homogeneously in the cytoplasm, suggesting 
TGC invasion along a self-produced matrix. Later on (gd 220-270) this localization shifts to a 
membrane-associated one. The expression of various integrin receptors throughout gestation has 
also been examined within the bovine placenta (Pfarrer et al. 2003). Molecules of the ECM and 
its corresponding integrin receptors have also been localized in bovine endometrium during 
the estrous cycle (Boos, 2000) and during bovine implantation in endometrium and trophoblast 
(MacIntyre et al. 2002, MacLaren & Wildeman 1995). In cattle TGC fusion with uterine epithelium 
(UE) during implantation has been proposed as being capable of changing the integrin/ECM 
composition of the subepithelial, endometrial stroma (MacIntyre et al. 2002). A distinct local 
change of stromal ECM (type I collagen content) upon implantation has been observed in goats 
(Guillomot 1999). In cattle, conflicting data on type I collagen downregulation in the subepithelial 
endometrial stroma in early pregnancy and/or the end of the cycles exist (Yamada et al. 2002, 
Boos, 2000), Due to the known extensive crosstalk of cell associated integrins with ECM proteins 
and many other growth factors and cytokine receptors such alterations are to be expected. For 
example, growth factor signaling affects the expression of a variety of molecules like MMP, TIMP, 
integrins and extracellular matrix molecules (ECM) during the establishment of human pregnancy 
(McEwan et al. 2009). In the bovine placenta multiple growth factor systems have been detected 
in the bovine placenta like FGF (Pfarrer et al. 2006a), VEGF (Pfarrer et al. 2006b), PAF (Bucher 
et al. 2006), EGF, Amphiregulin and Neuroregulin (Akbalik & Ketani 2013), Insulin-like growth 
factor (Ravelich et al. 2004) and Transforming growth factor β (TGFB) (Ravelich et al. 2006, 
Sugawara et al. 2010). Others, like bone morphogenetic protein (BMP) were found only in the 
bovine trophectoderm prior to uterine attachment (Pennington & Ealy 2012). In this context the 
relevance of the ECM should be highlighted again, since it plays a crucial and complex role 
during growth factor signaling. The ECM proteins are able to bind a great variety of soluble growth 
factors thereby regulating their bioavailability and integrating multivalent signals to the cell in 
a timely and spatially organized manner (Taipale & Keski-Oja 1997). To gain insights into the 
mechanistic aspects of how such growth factor systems could potentially influence MMP, TIMP, 
ECM molecules or integrin expression in bovine placental cell, in vitro studies were undertaken 
in the past. Such studies used bovine endometrial stroma cells and bovine blastocyst (Hirata et 
al. 2003b) or placental trophoblast cells (Dilly et al. 2010) and observed that growth factors like 
EGF, tumor necrosis factor (TNF) or ECM molecules like type I collagen, affect the expression of 
components of the MMP/TIMP system (Dilly et al. 2010, Hirata et al. 2003a, Hirata et al. 2003b). 
The maternal and fetal localization of proteins in the bovine placenta is shown in Table 1.
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Table 1. Distribution pattern of proteins in bovine placentomal tissue over the course of implantation and gestation 
(analyzed by immunohistochemistry)

MS: maternal stroma; ME: maternal epithelium; MBM: maternal basement membrane; MV: maternal vessels; FS: 
fetal stroma; UTC: uninuclear trophoblast cell; FBM: fetal basement membrane; TGC: trophoblast giant cell; FV: 
fetal vessel; gd: gestational day; gm: gestational month; nm: not mentioned
1 expression only after gd 60; 2 expression increase over the course of gestation; 3 expression decrease shortly before 
term.
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Table 1. (continued)

MS: maternal stroma; ME: maternal epithelium; MV: maternal vessels; FS: fetal stroma; UTC: uninuclear trophoblast cell; TGC: 
trophoblast giant cell; FV: fetal vessel; gd: gestational day; gm: gestational month; nm: not mentioned; 2 expression increase over 
the course of gestation; 3 expression decrease shortly before term; 4 expression only at the end of gestation; 5 expression vanished 
after normal calving; 6 very weak immunoreaction; 7 expression vanished with ongoing gestation; 8 expression increase shortly 
before term; 9 variable expression; 10 expression only at the begin of gestation; 11 only migestational (80-120day) expression; 12 
expression decrease over the course of gestation; 13 expression decrease during the last trimester of gestation; im immature TGC; m 
mature TGC.
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Drugs and pathology

During pregnancy/gestation, drugs or infectious agents can cross the placental barrier and harm 
placental integrity and the fetus (Giaginis et al. 2012, Johnson et al. 1994). At the same time 
nutrients have to selectively cross the placental barrier in a controlled manner to ensure optimal 
embryo growth. Nutrient and drug transport across the human placenta is either mediated by 
a variety of active transporters or by passive diffusion (Lager & Powell 2012, Giaginis et al. 
2012). In the bovine placenta, proteins responsible for maternal-fetal Ca2+ transport (Sprekeler 
et al. 2012) and glucose transport have been located on different placental membrane layers 
(Wooding et al. 2005a). In addition, the prominent drug efflux carrier P-glycoprotein 1 (ABCB1), 
known for its role in the human placenta (Neumanova et al. 2014), is also functionally expressed 
in the bovine placenta and in bovine caruncular epithelial cells in vitro, mediating a basal-to-
apical flux (Waterkotte et al. 2011). Therefore, such endometrial cells might be a proper in 
vitro model to study drug transport across the placental barrier of cattle. During gestation the 
bovine placenta is targeted by multiple infectious agents like parasites (Maley et al. 2003), 
viruses (Swasdipan et al. 2002) or bacteria (Hansen et al. 2011). Such agents have been either 
suggested as the cause for abortions (de Oliveira et al. 2010) or are also viewed critically in 
regard to pathogenicity (Agerholm 2013). In rodents and non-human primates, which are 
commonly employed for risk toxicity assessment, extensive data concerning placental lesions 
are available (Cline et al. 2013). Similar lesions (e.g. placental necrosis) are also observed in 
cattle (Gibney et al. 2008). Yet, placental morphological anomalies can also be caused due to 
non-infectious reasons like twinning (Benirschke 1995) or somatic cell nuclear transfer (SCNT) 
(Chavatte-Palmer et al. 2012). Furthermore, SCNT pregnancies also differ in their endometrial 
reaction to the fetus (Bauersachs et al. 2009).

One of the most common conditions occurring in cattle following parturition is RFM, which 
is associated with increased postpartum disease, decreased milk production and reduced 
reproductive performance and therefore is economically important (Laven & Peters 1996). Past 
studies analyzed a variety of factors in RFM such as apoptosis, and proliferation (Boos et al. 
2003a), the expression of singular MMP/TIMP proteins (Dilly et al. 2011) and the change in 
expression of multiple genes by microarray analysis (Streyl et al. 2012). Very different causes 
for RFM have been proposed ranging from breed to stress and oxidative damage (Kankofer 
2002). In addition, it is known that induction of parturition by different protocols also represents 
a major cause for RFM (Dilly et al. 2011). Normally at term a massive destruction of collagen 
and other ECM components accompanies uterine involution and expulsion of fetal membranes 
(McNaughton & Murray 2009). Failure of this process appears to be the underlying main 
cause of RFM, since it was demonstrated that collagenase injection via the umbilical arteries 
released the retained membranes (Eiler & Hopkins 1993). Therefore, it stands to reason that 
the regulation of the activity of endogenous collagenase (MMPs) in the bovine placenta plays 
a key role in the timely release of fetal membranes. One candidate for such a signal might 
be 12-oxo-eicosatetraenoic acid (12-oxoETE), which shows a peak concentration in maternal 
blood prior to release of fetal membranes and induces detachment of cells from culture vessels. 
In animal experiments injection with 12-oxoETE resulted in rapid release of fetal membranes 
(Kamada et al. 2012).

New discoveries and major challenges

In the past years multiple discoveries have been made, providing new information on the 
development and physiology of the bovine placenta. One such discovery is surely the use of 
cell lines for mechanistic studies on growth factor action (Hambruch et al. 2009, Dilly et al. 
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2010, Hirata et al. 2003b), TGC differentiation (Nakano et al. 2002b, Haeger et al. 2011) and 
cell-matrix interactions (Bridger et al. 2008). However, one of the main pitfalls is the isolation and 
characterization of such cell lines, particularly trophoblast lines (Haeger et al. 2011, Shimada et 
al. 2001, Talbot et al. 2010) due to cross contamination with other placental cell types (Bridger 
et al. 2007, Feng et al. 2000). Another drawback is the loss of TGC differentiation from such 
cell lines and the limited options to induce formation in vitro (Hambruch et al. 2009, Haeger et 
al. 2011, Shimada et al. 2001, Nakano et al. 2002a). More recently 3-dimensional cell culture 
models (spheroids) have been employed to study TGC formation (Haeger et al. 2011), trophoblast 
attachment (Sakurai et al. 2012) and endometrial PGF2α (Prostaglandin F2α) secretion (Yamauchi et 
al. 2003). Yet, the use of bovine placental cell lines might still prove to be a valuable tool in the 
future, as important observations in human trophoblast physiology (e.g. syncytialization) have also 
been made in cell culture systems (Kliman et al. 1986). In addition, studies have been published, 
which provide clues for further research on placental development including the following: (1) the 
fact that bovine trophoblast expresses mesenchymal-genes after attachment to the endometrium 
(Yamakoshi et al. 2012), which represents a dramatic change to mid-gestation as far as vimentin 
is concerned (Haeger et al. 2011), underlining the plasticity of bovine trophoblast cells during 
different stages of gestation; and (2) the hypothesis that endogenous retroviruses are evolutionary 
driving forces for placental structure, TGC differentiation and cell fusion in the bovine placenta 
(Koshi et al. 2012, Spencer & Palmarini 2012, Black et al. 2010, Nakaya et al. 2013). Furthermore, 
future work in the field of placental development should also be directed at the cellular effects of 
trophoblastic glycoproteins like pregnancy-associated glycoproteins (PAG), and their functional 
implications at the feto-maternal interface (Wooding et al. 2005b).

Conclusions

Due to the economic importance of bovine reproduction extensive data are available on the 
development of the placenta in cattle. Nevertheless, even though new intriguing facts have been 
discovered, the understanding of economically important diseases like RFM still poses a major 
challenge. A wide variety of important questions are available for future research studies to be 
undertaken by bovine and/or ruminant placentologists, since it has become clear that placental 
physiology and pathology are important. Despite new technological opportunities (e.g. microarray 
analysis), techniques such as electron microscopy have yielded an incredible amount of valuable 
data (Wathes & Wooding 1980, Wooding et al. 1994, Leiser 1975, Leiser et al. 1997) and could 
still be employed in future research. Interestingly, adaptive angiogenesis in the ruminant placenta 
(Krebs et al. 1997) shows remarkable similarities to adaptive angiogenesis in fetal villi in placentas 
of heavy smokers (Pfarrer et al. 1999). Therefore, researchers working predominantly on human 
placentation might also consider mechanisms associated with bovine placentation since the 
villous feto-maternal interdigitation and the branching of villi is similar to human placental villi. 
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