Searchable, peer-reviewed, open-access proceedings from bioscience and biomedical conferences

bp0017cpr9 | (1) | CPR2005

Uterine development and endometrial programming

Bartol F.F , Wiley A.A. , Bagnell C.A.

Structural patterning and functional programming of uterine tissues are mechanistically coupled. These processes ensure anteroposterior differentiation of uterine tissues from adjacent segments of the developing female reproductive tract (FRT) and radial patterning that establishes uterine-specific histoarchitecture and functionality. Uterine organogenesis begins prenatally and is completed postnatally. Genes required for FRT development include Pax2, Lim 1<...

bp0014cpr9 | Ovarian and Uterine Function | CPR1993

Sources and biological actions of relaxin in pigs

Bagnell C. A. , Zhang Q. , Downey B. , Ainsworth L.

Although the major source of relaxin in pigs is the corpus luteum of pregnancy, there is now evidence for relaxin gene expression and translation into protein in the theca intema cells of the preovulatory follicle, the corpus luteum of the cycle and the uterus. The theca interna cells retain their ability to express the relaxin gene and protein following ovulation. During the early stages of development of the corpus luteum, the theca-derived small lutein cells are the so...

bp0004rdr22 | Embryonic Survival | REDR1998

Uterine differentiation as a foundation for subsequent fertility

Bartol FF , Wiley AA , Floyd JG , Ott TL , Bazer FW , Gray CA , Spencer TE

Uterine differentiation in cattle and sheep begins prenatally, but is completed postnatally. Mechanisms regulating this process are not well defined. However, studies of urogenital tract development in murine systems, particularly those involving tissue recombination and targeted gene mutation, indicate that the ideal uterine organizational programme evolves epigenetically through dynamic cell–cell and cell–matrix interactions that define the microenvironmental conte...

bp0007rdr6 | Ruminant Transcriptome | REDR2010

The noncoding genome: implications for ruminant reproductive biology

Tesfaye D , Hossain MM , Schellander K

Advances in the analyses of human and other higher eukaryotic genomes have disclosed a large fraction of the genetic material (ca 98%) which does not code for proteins. Major portion of this non-coding genome is in fact transcribed into an enormous repertoire of functional non coding RNA molecules (ncRNAs) rather than encoding any proteins. Recent fascinating and fast progress in bioinformatic, high-throughput sequencing and other biochemical approaches have fuelled rapid ...