Searchable, peer-reviewed, open-access proceedings from bioscience and biomedical conferences

bp0013cpr16 | Gamete Physiology | CPR1989

Cloning of embryos

Prather R. S. , First N. L. ,

Summary. Nuclear transfer for the study of differentiation in amphibians has been used since the 1950s, but not until recently have the same procedures been applied successfully to some mammals. Nuclear transfer, as developed for the amphibian, is successful in sheep, cattle, rabbit, and pig, but not mouse embryos. This fact is discussed in relation to the species-specific timing of the activation of the zygotic genome. Nuclear transfer to an oocyte presu...

bp0013cpr10 | Ovarian Function | CPR1989

The synthesis and actions of steroids and prostaglandins during follicular maturation in the pig

Ainsworth L. , Tsangt B. K. , Downey B. R. , Marcus G. J.

Summary. Our understanding of the synthesis and production of follicular steroids and prostaglandins (PG) in the pig is based largely on in-vitro studies with granulosa and theca interna tissues obtained from Graafian follicles at various stages of maturation. As the follicle enlarges before the LH surge, granulosa cells exhibit a decrease in FSH receptors and are less responsive to FSH in terms of cAMP production. Concurrently, there is an increase in gr...

bp0015cpr18 | Advances in Biotechnology in Pig Reproduction | CPR1997

Advances in the generation of transgenic pigs via embryo-derived and primordial germ cell-derived cells

Piedrahita J. A. , Moore K. , Lee C. , Oetamau B. , Weaks B. , Ramsoondar J. , Thomson J. , Vasquez J.

The development of new technologies that would increase the efficiency for generation of transgenic livestock and would overcome some of the problems associated with random insertion of the transgene will greatly benefit animal agriculture. A potential alternative technology to pronuclear injection for the generation of transgenic pigs involves the isolation, culture and genetic manipulation of cell lines that can be reintroduced into the embryo for participation in the f...

bp0017cpr18 | (1) | CPR2005

Harnessing the biology of the oviduct for the benefit of artificial insemination

Holt W.V. , Elliott R.M.A. , Fazeli A. , Sostaric E. , Georgiou A.S. , Satake N. , Prathalingam N. , Watson P.F.

Spermatozoa fulfil a single role, namely achieving syngamy by transporting the haploid genome to their counterpart gamete, the oocyte. Simple as this may seem, it is fraught with many difficulties, especially in the face of biological processes that enable females to select spermatozoa after they have mated multiply with several males. Conversely, the female reproductive tract sequesters a privileged sperm subpopulation in the oviductal isthmus for variable periods of ti...

bp0008rdr22 | Oocyte and Follicle | REDR2014

The metabolism of the ruminant cumulus-oocyte complex revisited

Thompson Jeremy G , Gilchrist Robert B , Sutton-McDowall Melanie L

Summary. The progress in understanding the metabolism of the ruminant cumulus-oocyte complex (COC) from large antral follicles has progressed significantly in the past decade. In particular, new insights in the importance of lipid metabolism, ß-oxidation and its relationship to oxidative phosphorylation within oocytes have emerged. This provides opportunities for tapping into the potential yield of ATP from lipid metabolism, as ATP content is a major dete...

bp0014cpr9 | Ovarian and Uterine Function | CPR1993

Sources and biological actions of relaxin in pigs

Bagnell C. A. , Zhang Q. , Downey B. , Ainsworth L.

Although the major source of relaxin in pigs is the corpus luteum of pregnancy, there is now evidence for relaxin gene expression and translation into protein in the theca intema cells of the preovulatory follicle, the corpus luteum of the cycle and the uterus. The theca interna cells retain their ability to express the relaxin gene and protein following ovulation. During the early stages of development of the corpus luteum, the theca-derived small lutein cells are the so...

bp0016cpr1 | Development of The Follicleand Corpus Luteum | CPR2001

Nutritional regulators of the hypothalamic–pituitary axis in pigs

Barb C. R. , Kraeling R. R. , Rampacek G. B.

Nutritional signals are detected by the central nervous system (CNS) and translated by the neuroendocrine system into signals that alter secretion of LH and growth hormone (GH). Furthermore, these signals directly affect the activity of the pituitary gland independently of CNS input. Insulin-like growth factor I (IGF-I), insulin, leptin and specific metabolites, such as glucose and free fatty acids (FFA)', are potential signals of the metabolic status to the brain-pituit...

bp0004rdr17 | The Corpus Luteum | REDR1998

Intraovarian regulation of luteolysis

Meidan R , Milvae RA , Weiss S , Levy N , Friedman A

The corpus luteum is a transient gland, which is only functional for 17–18 days in the cyclic cow or for up to 200 days in the pregnant cow. Regression of the corpus luteum is essential for normal cyclicity as it allows the development of a new ovulatory follicle, whereas prevention of luteolysis is necessary for the maintenance of pregnancy. Evidence acquired over the past three decades indicated that PGF2α is the luteolytic hormone in ruminants. Neverthe...

bp0005rdr12 | Pre-natal Programming of Lifetime Productivity and Health | REDR2002

Gene expression in the developing embryo and fetus

Taylor J , Fairburn H , Beaujean N , Meehan R , Young L

Determining the stage- and tissue-specific patterns of gene expression shown by the embryo and fetus will provide information about the control of normal development. Identification of alterations in these patterns associated with specific abnormal phenotypes will also be informative regarding the underlying molecular mechanisms. In addition, qualitative and quantitative changes in gene expression that deviate from the norm may provide a potential marker system for predicting ...