Searchable, peer-reviewed, open-access proceedings from bioscience and biomedical conferences

bp0004rdr11 | Comparative Reproductive Function: Implications for Management | REDR1998

Comparative reproductive function in cervids: implications for management of farm and zoo populations

Asher GW , Monfort SL , Wemmer C

The cervids represent a complex assemblage of taxa characterized by extreme diversity in morphology, physiology, ecology and geographical distribution. Farmed species (for example red deer and fallow deer) are usually the common larger-bodied, gregarious and monotocous species that express marked reproductive seasonality in their temperate environment. Their commercial importance has facilitated considerable research into reproductive physiology and the development of assisted...

bp0013cpr1 | The Hypothalamic-Pituitary-Ovarian Axis | CPR1989

Hypothalamic control of gonadotrophin and prolactin secretion in pigs

Kraeling R. R. , Barb C. R. ,

Keywords: hypothalamus; gonadotrophin; prolactin; pig; neurocndocrine© 1990 Journals of Reproduction & Fertility Ltd...

bp0014cpr13 | Reproductive Management | CPR1993

Seasonal effects on fertility in gilts and sows

Love R. J. , Evans G. , Klupie C. ,

The ancestral wild pig is a short day length seasonal breeder. The domestic pig appears to have retained some of this seasonality as evidenced by a reduction in fertility during the summer—autumn period. The most important aspect of this seasonality is a reduction in the number of mated sows that farrow. Many of these sows conceive and embryos develop normally for 20 - 25 days before pregnancy is terminated and the sow returns to oestrus (25 - 35 days after mating). In ot...

bp0014cpr17 | Components of Prolificacy in Pigs | CPR1993

Genetic basis of prolificacy in Meishan pigs

Haley C. S. , Leel G. J.

Research in France and in the UK confirms the prolificacy of the Chinese Meishan breed to be about three to four piglets greater than that of control Large White females. Crossbreeding studies clearly indicate that this breed difference is due to genes acting in the dam and not in the litter itself. There is high heterosis for litter size in F1 Meishan x Large White crossbred females, such that their litter size is similar to or greater than that of purebred Me...

bp0014cpr19 | Components of Prolificacy in Pigs | CPR1993

Earlyembryonic development in prolific Meishan pigs

Ford S. P. , Youngs C. R. ,

Prenatal mortality in European pigs is estimated at 30-40%, the majority of which occurs between days 12 and 18 after mating. Chinese Meishan pigs are prolific, averaging three to five more pigs per litter than do European breeds. Early reports into the fecundity of Meishan females suggested that their prolificacy resulted from lower embryonic mortality when compared with European females exhibiting the same ovulation rate. The preponderance of evidence suggests that ther...

bp0016cpr5 | OOcyte Development in vitro and in vivo | CPR2001

Mammalian gonadal differentiation: the pig model

Pailhoux E. , Mandon-Pepin B. , Cotinot C.

In mammals, testicular differentiation is initiated by SRY (the sex-determining region of the Y chromosome) gene expression in Sertoli cell precursors, followed by upregulation of the SOX9 gene (SRY-related HMG box gene 9). Subsequently, differentiated testis produces two hormones that induce sexual differentiation of the internal and external genital tract. Knowledge of the molecular mechanisms involved in gonadal differentiation has increased greatly over the past deca...

bp0001redr10 | (1) | REDR1980

Endocrine patterns associated with puberty in male and female cattle

Schams D , Schallenberger E , Gombe S , Karg H

Summary. In four studies secretion patterns of LH, FSH, prolactin, testosterone and progesterone were measured in male and female cattle to determine endocrine changes associated with sexual maturation. Two periods of increasing gonadotrophin secretion were observed, the second one coinciding with puberty. A short luteal phase of 8–12 days precedes the first oestrus at 10–11 or 14 months of age. The testosterone values of the bulls increased with age...

bp0007rdr22 | The Ruminant Corpus Luteum | REDR2010

Regulation of corpus luteum development and maintenance: specific roles of angiogenesis and action of prostaglandin F

Miyamoto A , Shirasuna K , Shimizu T , Bollwein H , Schams D

Development of the corpus luteum (CL) in ruminants occurs in a rapid and time-dependent manner within 1 week after ovulation, with morphologic and biochemical changes in the cells of the theca interna and granulosa cells of the preovulatory follicle. These changes involve luteinisation of steroidogenic cells and angiogenesis to establish normal luteal function (progesterone secretion). The CL is composed of a large number of vascular endothelial cells, large and small steroido...